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DERIVATION OF NEWTONIAN-TYPE INTEGRATION COEFFICIENTS 
AND SOME APPLICATIONS TO ORBIT CALCULATIONS 

by 
C. E. Velez 

and 
J. L. Maury 

Goddard Space Fl ight  Cen ter  

CHAPTER I 

INTRODUCTION 

It is well known that finite difference operator techniques can be used to  obtain many useful interpola- 
tion and integration formulas. In particular, recursive relations for the coefficients of various integration or 
quadrature methods can be obtained which are ,  in contrast to those obtainable by the method of undetermined 
coefficients, readily amenable to automatic computation. 

In this  report, these difference operator techniques are used t o  construct generalized operators which 
define the coefficients of a large class of s table  integration formulas of the Newton interpolatory type. The 
resulting recursive relations have been programmed and used t o  compute the coefficients associated with the 
various popular integration formulas such  as those of Adams, Cowell, and Nystrom, as well as formulas of 
the Newton-Cotes type, which have applications in block, s ingle ,  and multistep starting algorithms. A spe- 
cial application -to the numerical integration of satellite orbits in multirevolution s teps  is a l so  presented. 

Finally, a computer program which performs the calculations with rational arithmetic is described, and 
the coefficients associated with some of the  well-known techniques are  tabulated. 

It should be remarked that this  report does not intend to present new formulas (although some of those 
derived are  not easily found in  the literature, in particular those pertaining to multirevolution starters) but 
to present a unified approach to  many types of formulas which are currently being used to solve a variety of 
problems. 

1 



.. In I1  I I I I1 I l l  1 1 1  1111 I 



CHAPTER I I  

FORMULATION 

A. Difference Operators and Identities 

Let n be a positive integer, s and h any real  numbers, and f a real-valued function defined on an inter- 
val  [a,  b ]  that is n-times continuously differentiable; that is, fCC"[a, b] .  Consider the linear operators n,, 
V,, E:, D", I defined by 

n,f(x) = f(x t nh) - f(x) 

vnf(x) = f(x) - f(x - nh) 

(forward difference), 

(backward difference), 

and 

E:f(x) = f(x t snh) 

Dnf(x) = f(")(x) (differentiation) , 

(shifting), 

lf(x) = f(x) (identity). 

Interpreting equality between expressions containing these operators in  the usual way,* some well 
known relations between these operators are the following: 

(1 ) 
'n A, =- I - V , '  

and 

E ,  = ( I  t A,) = ( I  - ',)- 1 , 

.hD - - ( I  t A) = E .  

From these identities, i t  follows that 

V = [ I  - E-'"] [ I  - E,'] , sn 

and 
hD = -log ( I  - V ) ,  

n = ( I  - Vn)-1'" - I 

Using (4) and (5). we can immediately form the identity 

(4) 

*Genera l ly  with respect to some c lass of polynomiols. See Reference 1 concerning the calculus of f in i te  differences. 
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where L is any positive integer and J and K are  real. In th i s  identity, powers of operators are  defined in 
the usual way. 

Our goal is to  find expressions for coefficients yi = yi(J, K ,  L) so that (7) can be expressed in  powers 
of V as 

Once this  is accomplished, we will show how (8) can  be  used to yield integration formulas for initial 
value problems of the form 

Y(L)(x) = f(x, Y) I 

with the initial values y(xo), y'(xo), . . . y (  L-l)(xo). 

In similar fashion, using (3), (4), and (5), we have the identity 

(9) 

where L is any positive integer and J and K are real ,  and again we are  to find expressions for coefficients 
ai  = a i ( J ,  K ,  L)  so that (10) can be expressed as 

(Kh) i  . 
T - D ' E - ,  + hL 2 a i ( J ,  K ,  L ) V ' D ~ E ~ .  

L- 1 

v~ 
i=l i = O  

Equation (11) will be used to develop multistep starting formulas for systems of the form (9), especially for 
the case L = 2, which is of interest for orbit trajectory computations. 

Finally, for applications in  the theory of multirevolution integration of satel l i te  orbits, we require the 
operator identity . 

which follows directly from relations (4) and (6). A s  before, we will seek  an expansion of (12) of the form 

4 



and will u se  it to develop multirevolution predictor-corrector and starting formulas. 

8.  Series Expansions 

Before performing the  expansions (8). ( l l ) ,  and (13), we will require the following ser ies  identities: 

where 

co 

(1 - x)" = (- l)i(;)x', 
i = O  

and 
co 

1 - (1 - x)" = x c (- l)yiy1)xi.  

i = O  

Identity (14) can be proved by induction as follows: For L = 1, 

[-log (1 - x)] = x E& 
i = O  

is well known. Assuming the identity is true for L = n, we have 

[-log (1 - x ) ] " + ~  = D-lD[-lOg (1 - x)Int l ,  

= D-'{(n t l)[-log (1 - x)l"(l - x)- l I .  

By assumption, 

X(i+n+l )  i 

i t n t l  
i=O j = O  

= (n t i)! 2 HI"). 

5 



Hence, by definition of 

and hence (14) is true for all L. Identity (15) is well known and (16) follows directly from (15). 

We now proceed to expand the operator expression (7) in powers of 0. Using (16), we first have 

m 

1 - E-" = 1 - ( I  - v)K = 0 bi(K)Oi, 
i = O  

where 

L 
so that the factor [l - E-"] can be expressed, by repeated ser ies  multiplication, as 

where, if L = 1, 

and, if L > 1, 

and 

[I - E-"] = OL 2 ej(K, L)Vj, 
i = O  

ei(K, 15) = 2 .{A 
jL-l=O 12= 0 

eo = K~ 

where j ,  are dummy indices. Next, we have 

i = O  

So by multiplying these  last two factors, we get 

(I  - E - K ~ E - J  = VL 2 fi(J, K,  L)V', 
i = O  

6 



where 

Finally, we have, from (14), 

We can  now form, by ser ies  division, the result 

where 

and 

[ -log I - ( I  E-K - a) ] L E - J  = 2 y i ( J ,  K ,  L ) O i ,  
i=0 

y o  = K L  

and these are  precisely the coefficients required in (8). In the following sect ions,  this  relation will be used 
to obtain various integration formulas. 

Next, we wish to  expand identity (10) in powers of V. We first have that 

1 [-log ( I  - 9 1  
K - -  I! 

l=L l=L 

and by (14) we have 

so that by collecting terms in powers of V, we have 

2 2 Ci(K,  L ) V i f L  , 

l=L i=O 
(25) 

7 



where 

j=o 

Next, we have, from (20), 

and hence the first factor on the right-hand s ide  of ( 1 0 )  can be expressed as 

where 

and 

= 2 d i (J ,  K ,  L)Vi, 
i = O  

i 

d i  = (- l)j-'(?~)c. I '  

j = O  

Moreover, s ince 

[ log ( I  - V) ]'=I"qL -log ( I  - VI 

is just the expanded portion of identity (7) with K = 1 ,  J = 0 ,  we have 

where y i  are given in (24). Hence, we can see that the ai = a i ( J ,  K ,  L), required in ( l l ) ,  are given by 

and 

8 



Finally, we wish to expand identity (12) in powers of vn. By (2), we can  see that expanding 

(I - E ~ K ) E ~ J  

in  powers of 0, is precisely the expansion of 

(I - E - ~ ) E - J  

in  powers of 0 so that, by (21), we have 

i = O  

Finally, expanding the factor 

where 

gi(N) = (- 1)'" (:?), 
we obtain the required Pi Pi(J, K ,  N) in (13), 

and 
P o  = €0 I 

Pi = € i ( J ,  K ,  1) - 
i gj(N)Pi-i. 

j =  1 

Before proceeding to the applications of these  operator expansions, we remark that the  identities (7), (lo), 
and (12), which we have expanded, were selected because of the specific applications we had in mind, 
otherwise their selection was  arbitrary. Also, the methods used to obtain the expansions were essentially 
the same in  all three formulas, and i f  the  need arose for another formula derivable from Newtonian operator 
methods the same techniques would be  applicable. Finally, these "techniques" involve little more than 
some elementary ser ies  algebra and result in  formulas amenable to automatic computations. 

9 



C. Integration Formulas and Measures of Accuracy 

Applying the operators (8) or (11) to an arbitrary, sufficiently smooth function y(x), we see that the re- 
sulting relation expresses differences of values of the function in terms of differences of its L th  derivative. 
For example, by (8), we have 

Vfjy(x) = h L  2 y i ( J ,  K ,  L)B'Y(~)(x t Jh)  . 
i = O  

(32) 

This  is precisely the type of relation one needs to numerically integrate initial value problems of the form 
(9). Note however that Equation (8) is valid only with respect to  a class of polynomials, in which case the 
sums are finite, and that for an  arbitrary function y(x), even when sufficiently smooth, the corresponding 
series (32) may fail  to  converge. These same remarks hold for Equation (11): hence we wish to find an  
expression for the error resulting from the truncation of (8) or (11) after n terms when applied to such a func- 
tion. To this  end, we wish to estimate the difference operators (Reference 2) L ,  and G , ,  defined by 

n 

L,Ly(x)] = Vky(x) - h L  y i ( J ,  K ,  L ) ~ ' Y ( ~ ) ( x  t Jh)  , 

i = O  
and 

(33) 

where y(x) is assumed, for convenience, to be an infinitely differentiable function defined on some interval 
[a,  b]  with the property that for any x and x t rh, contained in [a ,  b], and n 2 0, we have 

Next, by using the identity 

m 

V;Y(X) = (- l ) i c ) y ( x  - inh) , 
i = O  

where n ,  m are arbitrary positive integers, we see that (33) and (34) can be expressed, in ordinate form, as 

L 

LhLy(x)] = (- l)i(f.)y(x - iKh)  - h L  ( ( ~ ) Y ( ~ ) [ x  t ( J  - i)hl 
i = O  i = O  

10 



and 

where 

and 

Ghly(x)l  = y ( x )  - y (x  - Kh) - t i ( a ) y ( L ) [ x  t ( J  - i ) h ] ,  (37) 
i= 1 1-t i  

m =i 

Further, applying the Taylor expansion (35), we get  

Similarly, 

where 

11 



and 

for m > L - 1. j ! ( m  - j ) !  ' 
j = O  

So we see that the operators L, and G, can be expressed as a series in powizrs of hmy(m)!v? IS 

L , ~ ( x ) ]  = 2 Amhmy(m)(x) 
m=O 

and 

where 

and 

( m  - L)! 
f3 = -  

j ! ( m  - j ) !  m 
i = O  

f o r m > L - l .  

Now the operators Lh[y(x)] and G,[y(x)I are said to be of order p if  

and 

which wil l  be the case if  and only i f  

A m = B m = O ,  f o r O < m < p t L  

in the expansions (40). 

12 



The order of an  integration formula of the form (32), with a finite number of terms, can  be defined as 
the order of its associated difference operator. In the following, we will adopt this  convention, and we wil l  
assume the truncation error associated with formulas derived from (8) or (11) in  the form 

or 

where 
terms in the error expansion by assuming that some generalized mean-value theorem is applicable (see for 
example Reference 2,  p. 247). 

is some point in  the integration interval, so  that we are essentially neglecting the higher order 

In a similar fashion, we would l ike to  measure the error resulting from the truncation of operator (13) 
after n terms when applied to  a sufficiently smooth function. We remark that although this  formula does not 
relate functional values to differences of a derivative of this  function it could be considered an  integration 
formula i f  one considers the f i r s t  order approximation of hD as A. In actual practice, this  formula will be 
used in conjunction with an independent integrator which computes the necessary functional values for the 
right-hand s ide  of (13). The detai ls  of such an application are described in Chapter 111, Section C of this  
report. At this  point we simply define a measure of accuracy of such a formula in precisely the same fash- 
s ions as was  done for (8) or (11). Thus, we wish to estimate the difference operator 

where again y ( x )  is assumed to  be sufficiently smooth so that (35) holds. A s  before, we begin by expressing 
H h  in ordinate form: 

where 

Expanding the terms as before, we get  

13 
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so we see that H, can be expressed in  powers of hmy@)(x) as 

where 

The operator Hh[y(x)] is defined to be order p if  

H,[y(x)] = o(hP+') t higher order terms. 

A s  for the integration formulas (8) or ( l l ) ,  the truncation error associated with formulas derived from (13) 
will be in the form 

where C,+l is the first nonzero coefficient in (44). 

We remark a t  this point that throughout this  report, the error terms associated with various formulas for 
quadrature or integration derived from these operators will be omitted. For the methods given in the appen- 
dix, the error terms and orders presented were obtained directly from expansions (40) and (44), which are, in 
general, only estimates. No attempt was made to rigorously determine their sharpest form or estimate their 
magnitude. It was felt that such an analysis would, in general, be  lengthy, difficult, and outside the main 
thoughts of this  report which revolve about the idea of using computer-oriented arithmetic to derive useful 
numerical methods. Rigorous estimates can, of course, be found readily in the literature. 

14 
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CHAPTER 111 

APPLICATIONS 

A. Multistep Quadrature and Integration Formulas 
for First- and Second-Order Systems 

We begin this  section by indicating how the operator identity (8) can be used to define some well-known 
quadrature methods used to obtain approximations of integrals of the form 

f(x) dx . lb 
Letting 

where n is some positive integer, and 

xi  = a t  ih, 

we seek the coefficients W j ,  so that 

To this  end, le t  L = 1, J = 0 and K = n in (8) and, applying the operator to the function F(x), where 

F'(x) = f(x), 

we have, retaining n terms and omitting the truncation error, 

yj(O, n, l)ViF'(x), 

i = O  

which can be rewritten for x = x, as 

15 



We see that since (45) can be considered the ordinate form of (46), i t  is simply required that expressions for 
the yi be obtained. From (24) we have 

and 

j =  1 

Now from (21) we have 

= (- l)i(i:l) ' 

Therefore 

and 
Yo = n 

i 

yi = (- 1,yi+nl) - z ,  
j=1 

and finally, converting (46) to ordinate form, we have 

For example, for n = 2, we obtain 

y 0 = 2 ,  y 1 = - 2 ,  y z = 3 ,  1 

1 4 1 w --, w --, w --, 0 - 3  1 - 3  2 - 3  

16 
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and we have the well-known Simpson rule: 

loxz f(x) dx =-[f h t 4f1 t fol . 
3 2  

Similarly, for n = 3, we obtain 

9 9 3 y o =  3 ,  y 1 = - 2 ,  y2 =4, y 3 = - 3 *  

3 9 9 3 w --, w --, w --, w --, 0 - 8  1 - 8  2 - 8  3 - 8  

which yields Newton’s 3/8 rule: 

f(x)dx = -h[f3 3 t 3f2 t 3f, t f O I ,  8 

and in general, the coefficients defined by (47) and (48) yield the Newton-Cotes formulas of the closed type. 
The Newton-Cotes formulas of the open type, i .e.,  those which do not involve the ordinates at the ends of 
the integration interval, can be obtained from (8) by letting K = n ,  L = 1, J = - 1 ,  and retaining n - 2 terms: 

A s  before, we have from (24), 

and 
i 

Y .  ’ 

yi = fi(- I ,  n, 1) - >: cl, 
j=l 

where 

i 

fit- 1, n, 1) = >: (- l)i-j(;-;)ej, 
j = O  

i 

= >: b j ( n ) ,  since (i-i) = (- l) i-j  , and L = 1 ,  
j =O 

17 



j =O 

and hence 

and 

which, together with (48) with J 

For example, for n = 3, we have 

Y o  = n 

i i 

j t l '  
j = O  j =  1 

1, can be  used to define formulas of the type 

3 y o = 3 ,  y 1 = - 2 ,  

3 3 w - - ,  w --, 0 - 2  1 - 2  

and 

Likewise for n = 4, we get  the formula 

4h 
f(x)dx =-[2f, 3 - f, t 2 f l l ,  

and so forth ( see  Reference 1, pp. 73-74). 

Next we consider some well-known integration methods derivable from (8) for initial value problems of 
form (9). For the case when L = 1, we wish to  examine multistep methods of the Newton type in the form 

VKy(x) = h 2 yi(J, K ,  l )Viy '(x t J h ) .  

i = O  

First taking the values K = 1, J = - 1, we have 

Yo(- 1, 1 , l )  = 1 

18 



and 

Now, 

i 
Yi-j  

y1(- 1, 1,l) = fi(- 1, 1 , l )  - 
j=1 

j = O  

but 

l i f j = O ,  
Oif j > O .  

bj ( l )  = (- l)j(jil) = 1 
So we have 

and 
y o ( - 1 , 1 , 1 )  = 1 

i 

y 1 ( - 1 , 1 , 1 )  = 1 - xs, 
j=1  

which defines the  well-known Adams-Bashforth integration predictor formula 

y ( x )  - Y ( X  -- h )  = h yi(- 1, 1, l ) O ' f ( ~  - h)  
1=0  

for solving initial value problems 

In similar fashion, the often-used associated corrector formula, the Adams-Moulton, can be  obtained with 
K = 1, J = 0: we have 

yo(07 1, 1)  = 1 

and 
i 

Yi(0, 1, 1 )  = f I (0 ,1 ,  1) -E% 
j =  1 

19 



where 

So we have 

and 

= ei(l,  1) = bi(l) = 0, if i > 0. 

i 
Yi- j 

Yi(O,l, 1) = - 
j= 1 

and we obtain the formula 

which is often used to solve (52). 

Another popular formula, known as Nystrom's, can  be obtained with K = 2, J = - 1: 

Yo(- 1 , 2 , 1 )  = 2 
and 

and, as before, 

i 

fit- 1 , 2 ,  1) = >: (- p(: 1-1 l)ej(2. 1) , 
j = O  

but for any j > 1, 

We therefore have fi = 1 for all i 2 1, and hence 

Yo(- 1 ,2 ,1 )  = 2 
and 

i 
Y .  ' 

yi(- 1 ,2 ,1 )  = 1 - >:SI 
j =  1 

20 



which defines the formula 

defining a predictor for (52). 

We now examine methods of the form (L = 2): 

n 
vgY(x) = h2 >: y i ( J ,  K ,  2)Viy"(x t Jh) , 

i = O  

for the solution of initial value problems of the form 

which are of the type that frequently occurs in orbit trajectory computations. Analogous to the case when 
L = 1, we will obtain the predictor with J = - 1 and K = 1. We have, from (24), 

and 

Now 

i 

= >: ejo,  2 ) ;  
j = O  

but 

= ( - & ( 1 ) (  1+1 j-1+1 ) ' 
1=0 

21 
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1 i f j = O ,  
Oif  j > O .  

Also 

so  we see that 

yi(- 1 , 1 , 2 )  = 1 - 2 j =  1 

(2 1=0 

i +  

are the coefficients defining the Stormer predictor formula 

n 

V2Y(X) = h2  c yi(- 1, 1,2)Viy"(x - h)  

for solving (55). 

Finally, in  similar fashion, we can obtain the associated corrector formula, known as Cowell's method, 
using J = 0 and K = 1: 

n 
V2Y(X) = h2 yi(o, 1, 2)ViY"(X), 

i = O  

where 

and 

We remark here that recursions (50), (53), (54), (56), and (57) are  well known (see for example Reference 
2)* and usually are obtained by other procedures. We note however, that the recursion (24) could be used to 
generate all these  formulas in  a unified fashion. 

*See also Moury, J. L., and Brodsky, G. P., "Cowell Type Numerical Integration as Applied to Satel l i te Orbit Compvto- 
tion," NASA X-553-69-46, April  1969. 
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We next proceed to  other applications of the general operators (8), ( l l ) ,  and (13). The various integra- 
tion and quadrature formulas that can be generated by (8) through selection of values for J ,  K ,  and L should 
be clear a t  this point. It is noteworthy that by using nonintegral values of J and K ,  we can obtain a variety 
of interpolation methods which, together with the integration methods required here, could readily be used 
for stepsize modification or to compute output at  nonstep points. 

It is a l so  noteworthy that in  addition to defining multistep methods, operator (8) can be used to define 
block-type Runge-Kutta methods (Reference 3); for example, the five-point formulas 

A 

V,y, = h yi(- J ,  K, l)Viy’(xK t J h )  , 
i = O  

where K = 1 , 2 , 3 , 4 ,  and J = 4 - K ,  are precisely those required by such algorithms. 

Various combinations of the J ,  K ,  L parameters that were considered to be of general interest were 
used to compute the coefficients appearing in the appendix. 

B. Multistep Starting Formulas and Algorithms 

A s  is we l l  known, a serious drawback of using multistep methods to integrate differential systems of 
the form (9) is the requirement that an independent method be employed to obtain the necessary starting val- 
ues. The problem is, in general. that the starting procedure used is not so efficient as the multistep inte- 
grator, requiring either more derivative evaluations per s tep or a smaller s tepsize to maintain accuracy or 
both. In the present applications, in orbit and physical parameter estimation programs, this problem be- 
comes even more serious. This  is so for the following reasons: 

(1) The force models employed in such programs are generally sophisticated, so that the running time 

(2) The number of equations to  be integrated i s  frequently of the order of 100 or more. 
(3) It is often the c a s e  that the integrator must restart many times during the trajectory calculation be- 

of the program is directly proportional to  the total number of derivative evaluations performed. 

cause of discontinuities introduced in the accelerations a t  discrete points in the orbit. These discontinui- 
t i es  may be due to thrusting, large solar radiation-shadow impulses, or a variety of other possibilities. 

The starting methods that are currently used in such applications are frequently based on either Runge- 
Kutta or power-series formulas. Another method that is known, but perhaps less frequently used, is based 
on multistep formulas. Algorithms based on these methods may often involve a more complicated computer 
program, but experimentation has  indicated (Reference 4)” that such methods require fewer derivative evalu- 
ations than do the other methods. 

In this  section, we present the formulas and describe the multistep starting algorithms for the case of 
second-order systems [ L  = 2 in (9)1, s ince this ca se  applies to orbit computations. The generalization of 
these ideas to more arbitrary differential systems should be clear from this example. Assume that we wish 
t o  apply the predictor-corrector formulas [see (56). (57)] 

*See also Peabody, P. R., “DODS Numerical Integration,” Computer Sciences Corporation internal communication, 
September 1963. 
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V2yn+ 1 = h2 2 yi(- 1 ,  1 ,2)Viy i  (predictor) 
i=O 

(corrector) 
i = O  

to integrate the differential system 

Y"  = f ( x ,  Y )  

Y(XO> = Y o  

with given initial values 

Y'(X") = Y b .  

Fixing k in (59), we can convert the formulas to ordinate form, 

i=O 
and 

i=O 

We readily see  that to start applying these formulas, we require the starting values 

so  that we could then use (60)  to obtain yk+l ( n  = k ) ,  followed by successive applications of (61)  to obtain 
corrected values of yk+l and thus completing the f i rs t  step.  We would then repeat this predictor-corrector 
cycle with N = k + 1 ,  k + 2 ,  and so on. Hence we are required to compute the values of (62)  given y o ,  y d ,  
and y i  = f ( x O ,  yo) .  T o  this end we consider the operator ( l l ) ,  truncated after k terms, with L = 2 ,  applied 
to y k :  

where the a i ( J ,  K ,  2 )  are given in (30). Letting K = 1, 2,  3 ,  . . . k and J = k - K in this expression, and con- 
verting each formula to ordinate form, we obtain the formulas 

i=O 
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where, as before, 

m=i 

The idea behind the method is to use  (63) as one would a corrector formula, solving it by successive 
iterations. More precisely, let y i m ) ,  y p ) ,  denote the mth approximation of the required values and assume 
these are known; then the (m t 1)st approximation is given by 

i = O  
and 

The convergence of such a scheme can be proved in the same manner as one does for the corrector formula 
(61) (see,  for example, Reference 2,  p. 216). In fact i t  can be shown that if C is the Lipschitz constant 

associated with f(x, y ) ,  or is bound on d f / d y ,  then the method converges i f  h i s  such that 

All that remains t o  be determined is a method t o  obtain the f i r s t  approximation. In general, if h is suf- 
ficiently small, a sufficiently accurate first approximation is given by 

In orbit trajectory calculations, a more accurate first approximation can b e  obtained by using an analytic 
two-body solution. These approximations are generally not expensive to compute and can considerably 
reduce the number of required successive iterations of (64). 

Another scheme which will generally reduce the number of required iterations of (64) is to  place the 
given initial values in the center (assuming k is even) of the required starting values,  so that they become 

( y i ,  y ; l i  = (- 2 ,  k k  F) .  

The above algorithm can be used in this  case with the changes K = (1, k)  to K = ( - k / 2 ,  k / 2 ) ,  K # 0 ,  and 
J 1 k - K to J ( k / 2 )  - K .  
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We remark again that for higher values of L in (9), similar methods can be constructed from (11). Also, 
for L = 1, it is clear that (8) can be used to  obtain starting formulas, in fact  formulas (58) are precisely what 
we require for a five-point formula. Finally, we note that for equations containing derivatives, for example, 

the methods for different values of L can be used simultaneously to obtain the necessary starting values. 
This  same remark applies,  of course, to the basic integration of (67) using methods derivable from (8). 

C. Multirevolution Integration, Multirevolution 
Starting Formulas, and Algorithms 

To improve the efficiency of lifetime study and long-range prediction calculations, a method has been 
proposed that integrates orbits in multirevolution s teps .  This  method is well known (for example, Reference 
5 )  and wil l  be only outlined in this section. The recent interest in using orbit generation programs for life- 
time studies and planning interplanetary missions prompted the inclusion of these multirevolution integra- 
tion techniques in this report. Since starting procedures for such methods have not appeared in the popular 
literature, these are a l so  included in the analysis.  

Essentially, the method of multirevolution integration involves combining a usual short-step numerical 
integrator with a procedure which s teps  the calculations ahead in multirevolution increments. This  stepping 
procedure is similar to the usual predictor-corrector process in that i t  extrapolates the orbital elements N 
revolutions ahead and then, starting with these extrapolated values,  computes successive corrections. 

We begin by outlining this basic algorithm (a more detailed description was given by Velez”). Let f j  

denote the value of an orbital element a t  the descending node of the j th  revolution, and let  N be the number 
of revolutions to be stepped. If k is the order of the highest difference to be retained in (13), we have for 
K = 1, J = - 1, the multirevohtion predictor, applied to  f j + N :  

where we are using 

that is, h = 1 revolution, so that 

Af.  = f .  - f j ,  

E,l(Afi) = A f i + ,  

I If1 

and where the pi are given by (31) as 

Bo(- 1, - 1, N )  = fo(- 1, 1, 1) 

*Veler, C. E., “Numerical Integration of  Orbits in Multirevolution Steps,” NASA X-542-67-34 1, January 1967. 
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and 

Now, as in  (50), we have 

fi(- 1, 1, 1) = 1 for all i , 

so we have, using the definition of g j ( N ) ,  

P0(-1, 1, N) = 1 
and 

The associated multirevolution corrector can  b e  obtained from (13) with K = 1, J = 0 applied to f j+N.  

where, since 

l i f i = O  

0 if i > 0 '  
fi(O.1, 1) = 

we have 

and 
&(O, 1, N )  = 1 

Further, we can express (68) and (69) in ordinate form: 

and 
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where ti and 
described as follows: 

are defined in  the usual way in  terms of the pi. The basic  algorithm can now be simply 

(1) Compute the starting values 

A f i ,  i = 0, N, 2N, . . . , kN.  

(2) Using the value j = kN, use (70) to  predict the values of the orbital elements a t  the descending 
node of the [ (k  t 1)Nlth revolution. 

(3) Using the short s tep integrator, and starting with these extrapolated values, integrate one revolu- 
tion to  obtain their values a t  the [ (k  t l )N t 11th descending node and compute the difference 

(4) Using this  difference and formula (71), correct the values off( ,+,) ,  successively to  convergence, 
repeating s tep  (3) for each iteration. 

(5) Repeat s teps  (2) to  (4) with j = ( k  t 1)N, ( k  t 2)N, . . . , and so  on. 

A f ( k t  1)" 

It is easily seen that efficient starting procedures are essent ia l  to  the overall efficiency of the above algo- 
rithm, both for the short s tep integrations in s tep  3 and for the starting values of s tep  1. These integrators 
require a knowledge of the orbital elements a t  the descending nodes of the first kN t 1 revolutions. In lieu 
of performing a short s tep  integration over all these revolutions, the following method, analogous to those 
discussed in Sectiop B, could be used. 

Consider the operator (13), truncated after k terms applied to  fk,, 

where we le t  K = 1 , 2 ,  3, . . . , k and J = k - K. Converting each such formula to  the ordinate form, we have 

where, of course, 

m=i 

And again, as in the case of using (63). the idea is to  solve (72) by successive iterations. If we le t  f,!" 

and 'fi(m) denote the mth approximation of these values and assume they are  known, the (m t 1)st approxi- 
mation' is given by 

and 
(73) 
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where for each K ,  f’;;:] is obtained by the short s tep integration of the elements t o  this node, using as 
init ial  values &ti1). Note that the f, are just the valuesof the orbital elements a t  the node of the epoch 
revolution and are hence known. 

The convergence of this scheme can be proved in precisely the same manner as for (64). The first 
approximation of the starting values can readily be obtained from a two-body solution, and the idea of plat- 
ing the f,, nf, a t  the center of the required starting values, to improve convergence, can easily be formu- 
lated. 

We see that for each iteration, the method requires a t  most the short s tep integration of k revolutions, 
so that the overall efficiency of the method would generally be considerably improved over the starting pro- 
cedure based on a short s tep integration over kN f 1 revolutions, especially for large N. 
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CHAPTER IV 

PROGRAM DESCRIPTION 

The ser ies  expansions of these generalized operators were programmed in Fortran IV on the Univac 
1108 using a rational arithmetic package to eliminate the deterioration that would have occurred using float- 
ing point. In the program, each rational number was  represented by two contiguous, double-precision, 
floating-point words containing integral values. Input to the program consis ts  of values for the variables J ,  
K ,  and L. The output is tables of coefficients for the nonsummed" difference form, the nonsummed ordinate 
forms,  and, where applicable, the summed ordinate forms. The  nonsummed ordinate form is used by the pro- 
gram to  determine the truncation error that defines the order of the method. The  program consis ts  of a main 
routine which determines the generalized operator to be used, a subroutine to create the ordinate forms, sev- 
eral subroutines to calculate the truncation error and order, an assembly language format routine, and the 
rational arithmetic package. 

The rational arithmetic package consis ts  of- 

(1) GCD-a function using Euclid's algorithm to  compute the Greatest Common Divisor of two numbers 

[a l ,  a21 = GCD > 0 ,  

where GCD = 1 if a1 and a 2  are 0 or if a l  or a 2  is not integral 

( 2 )  ADD-a subroutine that performs rational addition defined by the following algorithm: 

(3) SUB-a subroutine that performs rational subtraction defined by 

*For  a d i scuss ion  of  the summed form of the in tegrot ion formulas, see Reference 1, page 327, or Maury and Brodsky, 
mentioned ear l ier .  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The recursive relations (24), (30), and (31) defining the coefficients of the operator identities (8), (ll), 
and (13), respectively, were found to be  an effective means of obtaining the coefficients of a broad spectrum 
of quadrature, interpolation, and integration formulas of the Newtonian type. The  methods used to obtain 
these relations were elementary and allow considerable flexibility of the bas ic  operator identities, easily 
yielding formulas of the Newtonian type not derivable directly from the operators considered in this  report. 

Although not every possible application of these operators was discussed in detail (e.g. applications 
to  interpolation) the applications presented should give the reader a sufficiently broad exposure to the capa- 
bilities, and a l so  the limitations, of the difference operator technique. 

Finally, i t  is remarked that the coefficients defining the Adams-Cowell integration formulas (50), (53), 
(56), and (57) and the starters (63) are  currently being used successfully in our orbit determination systems. 
Also, the multirevolution algorithm was  tes ted and found to be an effective means of saving computer time 
for long arc calculations. The  resul ts  of these t e s t s  were reported by Velez and mentioned earlier. It is 
expected that the multirevolution starters presented in this  report w i l l  improve th i s  process considerably. 

Goddard Space  F l ight  Center  
Nat ional  Aeronaut ics  and Space  Adminis t ra t ion 

Greenbel t ,  Maryland, March 27, 1970 
3 11-07-2 1-0 1-5 1 
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APPENDIX 

NUMERICAL EXAMPLES 

Tables of Coefficients in Rational Form 

The following tables of coefficients are grouped according to usage. (For example, a table of predictor 
coefficients and a table of corrector coefficients form a group, the tables of coefficients for a multistep 
starter form another, and so on.) Preceding each group is a brief discussion and the pertinent operator equa- 
tion. Each table within a group is preceded by the value of J ,  the shift exponent; K ,  the block s tep  varia- 
ble; and L ,  the derivative order. Each table is composed of two sets of coefficients: a set for use  in the 
difference formulation and a se t  for u se  in the ordinate formulation. The local error constant ( see  Equations 
[41(a)]) precedes each s e t  of' coefficients for the ordinate form formulas. 

Table Group I 

The two tables in this group are the Adams-Bashforth predictor coefficients and the Adams-Moulton cor- 
rector coefficients. These are used to solve the first-order differential equation 

and, with Equation (8 ) ,  can be expressed as  

in  

1 
i = O  

where J = - 1,0,  and by (24), 

and 

i =  1,2,3 . . . .  1 fi(- 1,1,1) = 1 

fi(0, 1, l )  = 0 
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II 11111 

The ordinate 11-point formulas are  then given by 

where 

Dif ference form 

Y o  = 1 
Y 1  = 1/2 
Y 2  = 5/12 

Y 3  = 3 18 
Y4  = 251 1720 
Y 5  = 95/288 

y 6  = 19 087160 480 

Y7 = 5 257117 280 

y g  = 1 070 01713 628 800 
yg  = 25 7131’89 600 

y l 0  = 26 842 253195 800 320 

m = i  

J = -1 K = l  L = l  

J = O  

Dif ference form 

Y o  = 1 
Y 1  = - 112 

Y 2  = - 1/12 

Y 3  = - 1/24 

Y4  = - 191’720 

Y 5  = -- 31’160 

Yfj = - 863160 480 

y7 = 275124 192 

Y 9  = -8 18311 036 800 
yg  -~ 33 95313 628 800 

y l 0  = -~ 3 250 433/479 001 600 

K = l  

Ordinate form, order = 11, 
local  error constant 4 777 223117 418 240 

to = 2 132 509 567/479 001 600 

c1 = - 2 067 948 781/119 750 400 
e2 = 1 572 737 587/31 933 440 

= - 1 921 376 209119 958 400 
t4 = 3 539 798 831126 611 200 

t5 = -82 260 6791623 700 
t6 = 2 492 064 913126 611 200 

t7 = -186 080 2911’3 991 680 

t8 = 

t9 = 

2 472 634 8171159 667 200 
-52841 941117 107 200 

cl0 = 26 842 253/95 800 320 

L = l  

Ordinate form, order = 11, 
l oca l  error constant - 4  6711788 480 

26 842 253/95 800 320 

164 046 413/1 19 750 400 
- 296 725 18311 59 667 200 

12 051 709/3 991 680 

-33 765 029/8 870 400 

2 227 5711623 700 

-21 677 72318 870 400 

23 643 791119 958 400 

- 12 318 413131 933 440 

9 071 2191119 750 400 

---3 250 4331479 001 600 
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Table Group II 

The two tables in this group are the Stormer predictor coefficients and the Cowell corrector coefficients. 
The formulas are used to  solve the second-order differential equation 

and, with Equation (8), can be expressed as  follows: 
i n  _- 

y(x) - 2y(x - h) t y(x - 2h) = h2 7 y i ( J ,  1, 2)Viy”(x t J h ) ,  
1 

i = O  

where J = - 1 . 0  and, by Equations (24), 

Y o ( J ,  1 , 2 )  = 1 , 

and 

fi(-  1, 1 , 2 )  - 1 
\ i = l , 2 , 3  , . . . .  

f i [ O ,  1 , 2 )  O j  

The ordinate 11-point formulas are then given by 

with t j ( y )  as previously defined in Table Group I. 

J =-1 K - 1  L 72 

Dif ference form 

1 
0 

1/12 
1/12 
191’240 
3/40 

a63112 096 
275/4 032 

Ordinate form, order - 11, 
l oca l  error constant 4 671/78 848 

263 465 6391159 667 200 
-296 725 ia3m a33 600 

-424 402 3 5 1 ~ 9  958 400 
2 337 301 223179 a33 600 
1 155 556 6 ~ 3 9  9 16 aoo 
1 637 523 683179 a33 600 

1 742 930 2631’159 667 200 

-29 064 97312 851 200 

y l o  = 3 250 43\53 222 400 ‘$10 3 250 43/53 222 400 
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J = O  K = l  L = 2  

Difference form 

Y o  = 

Y1  = 

Y 2  = 

Y 3  = 

Y q  = 

Yg = 

Y7 = 

Y9 = 

Y10 = -  

Y6 = 

Ya = 

1 
-1 
1/12 
0 

- 1/240 

- 11’240 
- 22 1 /60 480 

-- 191’6 048 
-9 829/3 623 800 

-407/172 800 
330 157/159 667 200 

Ordinate form, order = 11, 
local error constant -24 377/13 305 600 

eo = 3 250 433153 222 400 
el = 3 124 027/3 193 344 

c2 c3 = 16 745 741119 958 400 
= -57 128 9211159 667 200 

cq = -88 645 069179 833 600 
= 42 375 577139 916 800 

c6 = - 2 342 53313 193 344 
e7 = 7 139 837119 958 400 

c8 = - 18 674 153/159 667 200 
c9 = 1 838 8 ~ 7 9  833 600 

cflo = -330 157/159 667 200 

Table Group 1 1 1  

The two tables in this  group are the predictor formula and the corrector formula coefficients. The for- 
mulas may be used to solve the third-order differential equation 

y“‘ = f(x, y) . 

With Equation (8), these can be expressed as follows: 

10 

V3y(x) = h3 >: Yi(J .  1,3)0’y”’(x t Jh) , 

i=O 

where J = - 1,O and, by Equations (24), 

yo(J ,  1,3)  = 1 , 

j =  1 

and where the fi are given in Equation (21). The ordinate 11-point formulas are as defined in Table Groups 
I and 11. 
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J = - 1  

Difference form 

Y o  = 1 
Y 1  = - 112 
Y2 = 0 
Y 3  = 0 
Y4 = 1 1240 

Y5 = 1/160 

Y7 = 95112 096 

yg = 221130 240 

y8 = 9 82911 209 600 
y9 = 2 8491345600 

~ 1 0  = 330 157139 916 800 

J - 0  

Difference form 

Y o  = 1 

y2 = 112 

Y 3  = 0 

y1 = -312 

y4  = 11240 
y5  = 11480 
yg = 11945 
y7 = 11/20 160 
y8 = 471172 800 
y9 = 191161 280 
y l o  = 430115 966 720 

K = l  

K = l  

L = 3  

Ordinate form, order = 11, 
local error constant 24 37712 956 800 

[o = 6 275 14111 1 404 800 
41 = 10 485 877179 833 600 
c 2  = 16 745 741113 305 600 
5 3  = - 167 287163 360 
(4 = 50 087 159113 305 600 

e5 = --50 469 451113 305 600 
= 

= 

4 522 59111 663 200 
-3 020 74112 217 600 

5 8  = 2 419 06115 322 240 
e9  = -7  261 259179 833 600 

Elo = 330 157139 916 800 

L z 3  

Ordinate form, order .= 11, 
local error constant -6112 280 960 

eo = 330 157139 916 800 

el 
c2 
t3 = -100 921/950 400 
c4 = 5 935166 528 

= 36 642 533179 833 600 

= 15 601 049126 61 1 200 

= -757 019113 305 600 

c6 = 124 90914 435 200 
= - 3  2511316 800 7 c8 = 34 189113 305 600 

c9 = -6  271115966 720 

6 0  = 439115 966 720 

Table Group IV 

The tables  in this  group are the coefficients of the starter formulas that can be used to  form the starting 
values 

( Y i , Y J ,  i = -5,-4, . . . -1 ,1 ,2 ,  . . . , 5 
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required by the formulas given in Table Group I to solve the first-order differential equation 

with the initial value 

These  formulas can be expressed in difference form as 

where J and K assume the values 

J l l O  9 8 7 6 4 3 2 1 0  
K I - 5  - 4  - 3  - 2  -1 1 2 3 4 5" 

The coefficients y i ( J ,  K,  1) are given by Equation (24), and ordinate 11-point formulas are as defined in 
Table Groups I and 11. 

J = 10 K = - 5  L = l  

Difference form 

Y o  = 1 
Y1  = 75/2 
Y 2  = - 1 525112 

Y 3  = 6 175/24 

y4 = -49 775/144 

yg = 927851288 

y6 
~7 = 84 375/896 

= - 2 543 875/12 096 

yg = - 3 9-55 625/145 152 
y9 = 184 625/41 472 

~ 1 0  = - - 5  256 425/19 160 064 

Ordinate form, order = 11, 
local error constant --202 025/38 320 128 

40 = 114 985/1? :60 064 
(1 = - 320 875/4 790 016 

t2 = 31 1 375/912 384 

(3 = -838 375/798 336 

4b = 2 325 62511 064 448 
65 = -89 035/24 948 

= 2 306 375/1 064 448 

= - 2 793 6251798 336 (7 
(8 = 2 996 37516 386 688 

[9 = -8 183 125/4 790 016 
c l o  = -5 256 425/19 160 064 
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J=9 K =-4 L = l  

Difference form 

Y o  = 1 
Y1 = 28/1 
Y 2  = -260/3 
Y 3  = 156/1 
y4 = -8 114145 
Y5 = 1 250/9 
y,j E -67 1921945 
Y7 = 21 8081945 
Y8 = -8 449/2 025 
Y9 = 7/25 
Y 1 0  = 547/93 555 

J=8 K =  

Difference form 

Y o  = 1 
Y1 = 3912 
~2 -219/4 
~3 3 693/8 
y4 = -6 747/80 
~5 = 8 253/160 
Yg = -43 02112 240 
y7 = 4971128 
y8 = -12 881/44 800 
Y g  = -25/3 584 
Y ~ O  = - 1 851/1 971 200 

Ordinate form, order = 11, 
local error constant 61/93 555 

= -3671467 775 
41 = 4 0991467 775 
4; = - 1 387/31 185 
C3 = 2 996/22 275 
C4 = - 13 462/51 975 
e 5  = 4241155 925 
e 6 .  = -85 226151 975 
t 7  -14 972131 185 
t g  -216 6171155 925 
69 = - 158 327/467 775 
510  = 547/93 555 

-3 L = l  

Ordinate form, order = 11, 
local error constant -82713 942 400 

to = 127/394 240 
5, = -1 8571492 800 
t2 = 40 433/1 971 200 
E3 = - 17 247/246 400 
C4 = 34 9831197 120 

= -5 149/7700 
= -847 491 /9%5 600 

e7 -42903/35 200 

(8 = -773 809/1 971 200 
69 = 1 613/98 560 

(10 1 
-1 85111 971 200 
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J = 7  K = - 2  L = l  

Difference form 

Y o  = 1 
Y1 = 12/1 
y2 = -9113 

y3 = 12513 
y4 = -2  999/90 

y5 = 688/45 
y6 = -13 613/3 780 

Y7 = 41/140 

Y9 = 13/14 175 

y8 = 119116 200 

yl0 = 251/1 496 880 

J = 6  K =  

Difference form 

Yo = 1 

Y 1  = 1112 
yq = -149/12 

y3 = 117/8 

y4 = -6 731/720 
y5 = 4 2771’1 440 

y6 = - 19 087/60 480 

y7 = -275124 192 

y8 = -7 29713 628 800 
Y9 = -7112 800 
yl0 = -90 817/479 001 600 

Ordinate form, order = 11, 
local error constant 263/7 484 400 

(0 = -263/7 484 400 

5, = 2631748 440 

7931623 700 
64 = 7 2131415 800 
t5 = -62 389/155 925 

t6 = -102 569/83 160 

t 7  = -252 4491623 700 
[a = 8 2491356 400 

t2 = -3 43912 494 800 

4 = 

(9 = -9 70713 742 200 
tl0 = 25111 496 880 

- 1  L = l  

Ordinate form, order = 11, 
local error constant - 14 797/191 600 61 

14 797/95 800 320 

-32 309/17 107 200 

1 746 433/159 667 200 

- 163 45913 99 1 680 

3 216 337/26 61 1 200 

-379 5711623 700 

14 296 081/26 61 1 200 
1 394 959119 958 400 

-493 837131 933 440 

292 5311119 750 400 
-90 817/479 001 600 
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Difference form 

Yo = 1 

Y1 = - 9/2 
y 2  = 95/12 

y 3  = -161/24 
y 4  = 1 9011720 

Y5 = - 951288 
yg = -863/60 480 

Y7 = - 13/4 480 
yg = - 3  23313 628 800 
y 9  = - 2  49717 257 600 

y 1  = - 14 797/95 800 320 

J = 4  K = l  L = l  

Difference form 

Y o  = 1 

y* = 3713 
y 1  = --811 

y 3  = -9/1 

y 4  = 269/90 
y5  = - 14/45 

y6 = -3713 780 
y7 = -11756 
y a  = - 23/113 400 

Y9 = 0 
y l o  = 26317 484 400 

Ordinate form, order = 11, 
local error constant - 14 797/191 600 640 

t o  = 90 817/479 001 600 

51 = -292 5311119 750 400 
5 2  = 493 837/31 933 440 

53  = - 1 394 959119 958 400 

t 4  

55 = 379 571/623 700 

= 14 296 081126 611 200 

= - -3  216 337126 61 1 200 
[7 = 163459/3991 680 

= - 1 746 433/159 667 200 
C9 = 32 309/17 107 200 

- 14 797/95 800 320 = 

J = 3  K = 2  L = l  

Ordinate form, order = 11, 
local error constant 26317 484 400 

t o  = -25111 496 880 
51 = 9 707/3 742 200 
J2 = -8 249/356 400 
t3 = 252 449/623 700 
c4 = 102 569/83 160 

= 62 389/155 925 
t6 = --7 213/415 800 

c7 = -7931623700 
ta = 3 43912 494 800 
t9 = -2631748 440 
tl0 = 26317 484 400 
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J = 2  K = 3  L = l  

Ordinate form, order = 11, 
loca l  error constant -827/3 942 400 Dif ference form 

Y o  = 1 

y ,  = -21/2 

y 2  = 5714 

y 3  = -75/8 

y4 = 237/80 
y5 = -51/160 

y 6  = -2912 240 

y7 = -13/4 480 

yg = -7/6 400 

yg = -7/12800 

y1 0 = - 127/394 240 

50 = 1851/1  971 200 

41 = - 1 613/98 560 

e2 
53 = 42903/35 200 
t4 = 847 491/985 600 

t5 = 5 149/7 700 

e6 = -34 983/197 120 
(7 = 17 2471246 400 

(g 

(9 = 1857/492 800 
(1, = - 127/394 240 

= 773 809/1 971 200 

= -40 433/1 971 200 

J = l  K :4  L = l  

Dif ference form 

Y o  = 1 
y ,  = -1211 
y 2  = 44/3 

y 3  = - - 2 8 / 3  

y4 = 134/45 

y5 = - 14/45 

y6  = -8/945 

Y7 = 0 
yg = 13/14 175 

~9 = 13/14 175 

y 10 = 367/467 775 

Ordinate form, order = 11, 
loca l  error constant 61/93 555 

eo = -547193555 

t1 = 158 3271467 775 

c2 = 216 617/155 925 

(3 = 14 972/31 185 

(4 = 85 226/51 975 

c5 = -424/155 925 

56 = 13 462/51 975 

5, = -2996122 275 
c8 = 1387/31 185 

E9 = -4  099/467 775 

410 = 367/467 775 
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J = O  K = 5  L = l  

Difference form 

Yo = 1 
Y1 = - 25/2 
Y2 = 175112 
Y 3  = -- 75/8 
Y4 = 425/144 
Y5 = - 951288 
Y6 = -275/12 096 

Y7 = -275/24 192 
Y 8  = - 175/20 736 
Y 9  = -25/3 584 
y l 0  = - 114 985/19 160 064 

Ordinate form, order = 11, 
local error constant -202025/38 320 128 

60 = 5 256 425/19 160 064 
t1 = 8 183 12514 790 016 

t2 = - 2  996 375/6 386 688 
cf3 = 2 793 6251798 336 

c4 
cf5 = 89 035/24 948 

cb  
[T = 838 3751798 336 

t8 = -311 3751912 384 

= - 2  306 375/1 064 448 

= -2  325 625/1 064 448 

c9 = 320 875/4 790 016 

[lo = - 114 985119 160 064 

Table Group V 

The tables in this  group are  the coefficients of the starter formulas that can  be used to form the starting 
values 

( y i ,  y ; )  , i = - 5 , - 4 ,  . . . - 1 , 1 , 2 ,  . . . , 5 

required by the formulas given in Table Group I1 to solve the second-order differential equation 

with initial values 

and 

These  formulas can b e  expressed in difference form as 

Y(X0 + Kh) - y(x0)  = Khy' t h2 2 y i (J ,  K, 2)Viy"(xK t Jh) , 
i = O  

where J and K assume the values shown in Table Group IV, the  yi(J ,  K ,  2)  are  given by Equation (24) ,  and 
the ordinate 11-point formulas are  as defined in Table Groups I and 11. 
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J = 10 K =-5 L = 2  

Difference form 

Yo = 25/2 
Y 1  = - 250/3 

Y2 = 5 875124 

yg = -30 125/72 
y4 = 133 3751288 

y5 = -43 975/126 
y6 = 4 404 125/24 192 

y7 = - 4  680 625/72 576 
y8 = 4 191 125/290 304 

yg 

ylo = 

= -8 183 125’4 790 016 

202 02513 483 648 

J = 9  

Difference form 

Yo = 8/1 

Y 1  = - 15213 

Y2  = 4 16/3 
yg = --9 664/45 
y4 = 1 864/9 

y5 = -40 616/315 
y6 = 9 7841189 

y7 = -181 0961’14 175 

ya = 3 346/2 025 
yg = - 1  094‘18 711 

ylo = -124‘93 555 

Ordinate form, order = 11, 
local error constant 1 918 325’1 162 377 216 

to = -77 425/38 320 128 

= 62 87512 737 152 

= - 1 539 875/12 773 376 
= 208 6251532 224 

e4 = -5  942 875/6 386 688 

e5 = 10 314 625/3 193 344 

e6 = 22 426 62516 386 688 

c7 = 5 650 37.511 596 672 

ea 
c9 

= 21 348 625112 773 376 

= 21 621 125119 160 064 

tla = 202 0 2 ~ 3  483 648 

K = - 4  L = 2  

Ordinate form, order = 11, 
local error constant - 1 556170 945 875 

t o  = -52/467 775 
c1 = 7581467 775 
cf2 = -356/31 185 

5, = 8 3681155 925 

C4 = -6  584131 185 

c5 = 280 124/155 925 

t6 = 532 184/155 925 
t7 = 2704/1 485 

t a  = 23 756/22 275 

e9 = 122/1 701 
[lo = - 124193 555 
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Difference form 

Y o  = 9/2 
Y1 = -27/1 
y2 = 549/8 
y 3  = -3831140 

y4 = 12711/160 
y5 = -44251112 

Yg  = 50 319/4 480 
y7 = -35 451/22 400 

y8 = 22513 584 
Y 9  = 17/7 040 

y ,o  = 1 69313 942 400 

J = 8  K = - 3  L = 2  

Difference form 

Ordinate form, order = 11, 
local error constant 247 319/1 793 792 000 

to = - 1  06313 942 400 
5, = 6 511/1 971 200 
e2 = -10 833/563 200 
C3 = 1 029114 080 

[ A  1 -88 8271394 240 
e5 = 280 821/197 120 

[6 = 4 345 14911 971 200 
57 = 464 187/492 800 
c8 = 7 443/71 680 

c9 = -529178 848 
= 1 69313 942 400 

Y o  = 2/ 1 
y 1  = -34/3 
y 2  = 80/3 
y3 = - 1  502/45 
yq = 2 117190 

yg =-5651/630 
yg = 14661945 
y7 = - 119/2 025 
yg = -103/113 400 
yp = 589/3742 200 
~ 1 0  = 1091’935 550 

Ordinate form, order = 11, 
local error constant 1 303/21 021 000 

[o = -263/1 871 100 

t1 = 263/149 688 
(2 = -131112474 
6 3  = 15913 850 

e4 = -41 543131 1 850 

= 11 1 9731124 740 
46 = 35 932131 185 

= 263/5 670 
= 3 587/623 700 

= - 7071534 600 

510 = 109/935 550 
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J = 6  K = - 1  L = 2  

48 

Difference form 

Y o  = 1 /2 
Y1  = - 8/3 

y 2  = 139/24 

y 3  = -2  3331360 
YA = 5 539/1 440 

y5 = -2  713/2 520 
y b  = 275/3456 

y7 = 8 563/1 814 400 
y8 = 6 533/7 257 600 

y9 = 30 5771119 750 400 
y l o  = 87 2991958 003 200 

Y o  = 1/2 
-7/3 

103/24 
Y 1  = 

Y 2  = 

y 3  = - 1  387/360 

y4 = 475/288 
y 5  = - 1  2311’5 040 

y b  = -199/24 192 

y7 = - 409/259 200 

y 8  = - 3  391/7 257 600 
y g  = -263/1 496 880 

y , o  = -14 797/191 600 640 

J = 4  

Difference form 

Ordinate form, order = 11, 
local error constant 5 512 8131145 297 152 000 

to = - 14 7971’191 6QO 640 

51 = 90 817195 800 320 

t2 = -1 763 9391’319 334 400 

t3 = 166 919/7983 360 

t4 = - 10 11 1 8191’159 667 200 

t5 = 31 494 553/79 833 600 

5 6  = 14 797/82 944 

t7 = -60 9171’1 900 800 

t8 = 466 157/63 866 880 

c9 = -79 829/68 428 800 

el,-, = 87 299/958 003 200 

K = l  L = 2  

Ordinate form, order = 11, 
local error constant -5  512 813/145 297 152 000 

60 = 87 2991958 003 200 
t1 = -79 829/68 428 800 

t2 = 466 157/63 866 880 

e3 = -60 917/1 900800 

64  = 14 7971’82 944 

c5 = 31 494 553179 833 600 

t6 
t7 = 166919/7 983 360 

t8 = -1  763 939/319 334 400 

= - 10 11 1 819/159 667 200 

69 = 90 8 17/95 800 320 

tl0 = - 14 797/191 600 640 

I I I I I I 11111 I 11111 I 1111 I I I 
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J = 3  

Dif ference form 

Y o  = 2/1 

y2 = 4413 
y3 = -538/45 

y1 = -2613 

y4 = 409/90 

~5 = -71/126 
Y 6  -19/945 

y7  = -52/14 175 
Y S  = -23/22 680 
y9 = -263/748 440 
~ 1 0  =-26311 871 100 

l j i f fe rence form 

1’0 = 912 

y 2  ~ 22518 
y1 = -18/1 

yg -849140 

~4 - 1 203/160 
yg = - 1231’140 

y6 = -14114 480 
y7 = - 129/22 400 

yg -21112800 

Y9  = -2W/492800 

~ 1 0  - 1 06313 942 400 

K = 2  L = 2  

Ordinate form, order = 11, 
local error constant - 1 303121 021 000 

t o  = 1091935 550 

51 = -7071534 600 
6, = 3 5871623700 
e3 = 263/5 670 

E4 = 35 932131 185 

t5 = 11 1 9731124 740 

c 7  = 159/3 850 
t8 = -131112474 
6 = 2631149 688 

510 = -26311 871 100 

Cb = -41 543/311 850 

9 

Ordinate form, order = 11, 
loca l  error constant -247 31911 793 792 000 

1 69313 942 400 E O  

Cj = -529’78 848 
S; = 7 443/71 680 
53 = 464 1871492 800 

e4 
t5 - 280/821/197 120 

:= 4 345 149/1 971 200 

e6 = -88 827/394 240 
= 1029/14 080 

68 = -10 8331’563 200 

t g  = 6 51111 971 200 

610 = - 1 063/3 942 400 

49 



J = l  K = 4  L = 2  

Dif ference form 

Y o  = 

Y 1  = 

Y 2  = 

Y 3  = -  

Y4 = 

Y5  = 

Y7 = 

Y 9  = 

y10 = 

Y6 = 

Y8 = 

8/1 

- 8813 

12813 

1 376/45 

472145 

- 3761315 

-81189 

-104114 175 

-26/14 175 

- 34/66 825 

-52/467 775 

Difference form 

Y o  = 2512 

y 1  = -125/3 

y 2  = 1375124 
y 3  = - 2  875172 

y 4  = 3 875/288 

y 5  = - 1  525/1 008 

Y g  = - 1 375124 192 

y7 = -125/10368 

y8 = - 1  375/290 304 

y 9  
~ 1 0  -77 425138 320 128 

= -6  62512 395 008 

Ordinate form, order = 11, 
loca l  error constant 1 556170 945 875 

= - 124/93 555 

6, = 122/1 701 
J2 = 23 756‘22 275 

(3 = 2 70411 485 
c4 = 532 1841155 925 

c 5  = 280 1241155 925 
J6 = --6 584/31 185 

e7 = 8 368/155 925 

c8 = -356131 185 
c9 = 7581467 775 

elo = - 521467 775 

J = O  K = 5  L = 2  

Ordinate form, order = 11, 
loca l  error constant -1  918 32511 162 377 216 

to = 202 02513 483 648 

t1 
J2 

c3 = 

= 21 621 125119 160 064 

-= 21 348 625112 773 376 

5 650 375/1 596 672 
= 22 426 62516 386 688 

= 10 314 62513 193 344 
y -  - 5  942 87516 386 688 

c5 
C6 
t7 = 208 ~ ~ 5 3 2  224 

t g  
f 9  62 87512 737 152 

610 = 

= - 1 539 875112 773 376 

-77 425138 320 128 

50 NASA-Langley, 1970 - 19 
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